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FOREWORD

Research related to advanced nuclear rocket propulsion is
described herein. This work was performed under NASA Grant
NsG-694 with Mr. Maynard F. Taylor, Nuclear Systems Division,
NASA Lewis Research Center as Technical Manager.
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ABSTRACT

The stability of the mixing region between co-flowing
streams of different velocity and density has never been
adequately investigated. The reason for this is that a
general similarity solution for velocity and density
ﬁrofiles has not been available until recently.

In this work, the solution method of Iessen (1948)
for the homogeneous case was extended to the heterogeneous
case in an attempt to find a neutral stability curve for
the more complex case. The extension was based on the
recent similarity solution obtained by the authors.

A branch line of the neutral stability curve was
found but curves with non-zero amplification and damping
factors fell on the same side of the neutral stability

curves.
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I. INTRODUCTION

The hydrodynamic stability of the mixing region be-
tween parallel streams is of fundamental interest. Lord
Rayleigh first discussed this stability problem as early
as 1880. The problem is important because the width of
the mixing region as well as the transport rates differ
drastically between the cases of.laminar and turbulent
flow. |

The cases considered here are the homogeneous - both
streams of the same density, and the heterogeneous - the
two streams have differing densities.

The homogeneous case has been discussed extensively
in the literature because a similarity solution has been
available to provide complete descriptions of velocity
profiles in the mixing region. For this case, viscosity
is the only stabilizing factor since in the inviscid limit
the flow is inherently unstable.

The literature studies of the heterogeneous case have
been limited because no similarity solution for this case
has been available. The authors, however, in a preceding
report (67) have obtained a general solution for the
velocity and density profiles in the mixing region for
this case. For the heterogeneous case, stabilizing factors
in addition to viscosity are present. The criteria for

stability, however, have not been clearly defined.



The purpose of this report 1s primarily to use the
similarity solution (67) in an extension of a method
reported by Iessen, (%) for the homogeneous case to

"attempt to obtain some stability criterion for the

heterogeneous case.



II. BACKGROUND

Ii- 1 Homogeneous Case

The purpose of hydrodynamic stability studies is to
provide criteria on the stability of particular flows.

As previously méntioned, the viscosity is the only
stebilizing effect for homogeneous flows and the stab-
ility criterion is given in terms of a critical Reynolds
number.

Hydrodynamic stability studies may be classified as
inviscid or viscous. An inviscid analysis can answer the
question o
tion is basically stable or unstable. However, the effect of
viscosity on disturbances in the flow is not considered.

Thus an inviscid analysis cannot provide a critical
Reynolds number.

Iord Rayleigh,® before the turn of the century,
established two important theorems concerning the stabllity
of homogeneous inviscid laminar velocity profiles based on
the linearized theory of infinitesimal disturbances. The
first of these states that a point of inflexion in the
velocity profile constitutes a necessary condition for
the occurence of instability. The second theorem states
that the velocity of propagation of neutral disturbances

is smaller than the maximum velocity of the mean flow.



Tollmien®S later showed that the existence of a point of
inflexion in the velocity profile constitutes a necessary
and sufficient condition for the occurence of instability.
However, Tollmien's proof is valid only for those flows
which exhibit a vorticity maximum. While these theorems
are for an inviscid fluid, they none the less provide in-
formation of fundamental interest in the study of hydro-
dynamic stability.

The problem of the hydrodynamic stability of a homo-
geneous half-Jjet flow has received considerable attention.
Investigations of this problem may be differentiated in
the following way. Iessen,® Iin” and Chiarulli® in their
analyses solved the equations of continuity and momentum
to obtain the velocity distributions in the mixing region.
All other investigators assumed some form of an analytic
function to represent the velocity distribution in the
mixing region. It is well established that the velocity
profile in the mixing region of a half jet contains a
point of inflexion. Thus, according to Rayleigh's first
theorem the flow is unstable in the inviscid case.

In hydrodynamic stability analyses, the flow in the
mixing region is first assumed to be stable. The equations
of continuity and motion are solved to obtain the laminar
velocity profile in the mixing region. This profile is
then investigated to determine if it is stable or unstable.

Iessen® obtained a similar solution for the velocity

distribution in the mixing region of a half-jet flow by



first developing an asymptotic expression which represented

the solution for large negative values of the independent

similarity variable 5 = yl.vi . In thlis expression, X
and y are rectangular coordinates, v 1s the kinematic
viscosity and U is a reference velocityol He then used
the method of analytic continuation (Taylor series) to
numé?ioally integrate his differential equation and obtain
the solution. He next employed the same method to obtain
a solution of the Orr-Sommerfeld equation of hydrodynamic
stability. (See section III-2 ). However, Iessen was
unable to obtain a complete neutral curve because of in-
accuracies in his solution method at low values of the
Reynolds number. He thus was not able to give a value
of the critical Reynolds number for stable flow. The
partial neutral curve that he obtained indicated that the
flow is unstable except for very low Reynolds numbers.

Iessen and Ko'® have very recently extended Iessen's
earlier work. By employing a slightly different solution
method they were able to obtain a complete neutral curve
and a value of the critical Reynolds number of 3.6. How-
ever, they showed that if the solution is corrected for
the non-parallelism in the flow that exists at low
Reynolds numbers; then the minimum critical Reynolds
number becomes 12.

The curve of neutral stability for a homogeneous

flow is glven in a wave number - Reynolds number plane.



For very large values of the Reynolds number the curve of
neutral stability approaches an asymptote. The asymptotic
value of the wave number for infinite Reynolds number is
known as the cut-off wave number. The flow is stable for
disturbances with wave numbers greater than the cut-off
wave number for all values of the Reynolds number. Iessen
obtained a value of the cut-off wave number of 0.395.

Chiarulli® applied Heisenbergs'? solution method in
his analysis of the stability of half-jet type flows.

He used Goertler's* numerical method

to solve the continuity and momentum equations to obtain
the velocity profiles in the mixing region. A complex
integral expression was derived from which the eigenvalues
were to be obtained for the curve of neutral stability.
The inviscid case (infinite Reynolds number) was first
considered. A value of the cut-off wave number of 0.51
was obtained as opposed to Lessen's value of 0.395. The
complexity of the expressions involved made it impossible
to obtain a solution for the viscous case and thus a
critical Reynolds number.

Iin” later extended Chiarulli's analysis to the case
of compressible flow. He concluded that when the rela-
tive speed of the two parallel streams exceeds the sum
of their velocities of sound, subsonic oscillations cen
not occur. He also showed that a necessary condition
for the possible occurence of subsonic disturbances is

that somewhere in the flow field



da aw _

where y is the transverse coordinate, p is the density and
w is a dimensionless velocity distribution. The above
conclusions are from an inviscid analysis. A recent study
of the inviscid stability of a compressible half-jet type
flow has been given by Iessen, et. al.'®

An analytic function or a Broken line was used to
approximate the velocity distribution in the mixing region
of a half-jet in the stability analyses of Betchov and

Szewezyk,t® Curle®® and Esch.®* Curle used the function
U = V tanh (y/L)

to represent the velocity distribution in the mixing
region. He obtained a mininmum critical Reynolds number,
R = VI/v of 8.9.

Betchov and Bzewcyk also used the function
U = Uo tanh (y/L)

to represent the velocity distribution in the mixing
region. No minimum critical Reynolds number was found.
However, a spreading layer in which L in the above equa-

tion increases with time according to the relationship
L = Lyt

was also considered. TUsing their results for L equal to

a constant and applying some physical reasoning based on



the total amplification available to small perturbations,
they predicted a critical Reynolds number of 150.

Esch®' used a piece-wise linear profile in his anal-
ysis. Unétable disturbances were found at all values of
the Reynolds number. This problem has also been considered

by Tatsumi and Gotoh®2 and Carrier.2®

IT -2 Heterogeneous Case

The instability of a stratified heterogeneous fluid
when the different layers are in relative motion is
classically referred to as Kelvin-Helmholtz instability.
Consideration of this problem has indicated that stabil-
izing influences in addition fTo the viscosity affect the
stability of the flow. First there is the effect of what
has been called the "heterogeneity of inertia'. This
arises from the fact that the resistance per unit volume
to accelerating forces is not constant because of the
density variation. If the flow takes place in a gravi-
tational field, an additional effect is apparent. Work
mist be done to effect the interchange of volume elements
against the gravitational field. The performance of this
work decrgases the net kinetic energy available for trans-
fer from the mean flow to the fluctuating components.

The effect of the heterogeneity of inertia has been
studied by Menkes.®*%* He considered the flow to be in the

absence of a gravitational field. He represented the



velocity distribution in the mixing region by
U(y) = tanh (y/d)

and assumed that the density deéreased exponentially With
height. He demonstrated that disturbances with wave
numbers larger than the width of the mixing region are
stable and that a necsssary condition for instability is

that

d (p %%)
should change sign somewhere in the flow field. It is
interesting to note that this is the same condition as
that given by Iin” for the inviscid homogeneous compress-
ible flow case. DMenkes analysis is also for the inviscid
case. The stability criterion for viscous flow including
the effect of the heterogeneity of inertia is still given
in terms of a critical Reynolds number.

The effect of a gravitational field was first dis-
cussed by Richardson®® and by Prandtl.®® Richardson's
discussion concerned the supply of energy to and from
atmospheric eddies. Richardson derived a stratification
parameter which determined if the kinetic energy
associated with velocity fluctuations would increase.

This parameter subsequently became known as the Richardson
number. Prandtl pointed out that the stability of viscous
density stratified flows depends on the Richardson number

‘as well as the Reynolds number. The gradient form
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Richardson numbsr is given by

= (%)
Ri = &% - I1-2.1
(2)z
3y
where g is the acceleration of gravity, p is the density,
u is the velocity and y is the coordinate in the direction

of the gravity field. Defining d as the reference length

referring all velocities to the reference velocity V; the
Richardson number may be defined as

J = Eggf— I1-2.2

The stability of density stratified flows in the

presence of a gravity field has been considered by
Taylor,27 Goldstein,®®, Drazin,2®® Miles®° and others.3232
These analyses were all for the inviscid case and did not
include the effect of the heterogeneity of inertia.

Taylor considered several problems of three of four
superposed streams. The velocity in each layer was con-
stant or varied linearly and the density was either con-
stant or decreased exponentially with height. He con-

cluded that there might be stability for

J > 1/4

in the limiting case of a continuous density distribution.
Goldstein considered a three layer flow. The velo-
city was constant in the upper and lower layers and varied

linearly in the middle region. The density decreased



exponentially with height in the upper two layers and was
constant in the lower layer. He concluded that disturbances

can be neutrally stable only if

J < 1/h
and therefore the flow is stable for
J > 1/4

and unstable for
J < /4

Drazin®® considered the stability of a shear layer
between parallel streams with density stratification. The
velocity distribution in the mixing region between the two

streams was represented by

U = V tanh (y/d)

and the density was assumed to decrease with height accord-

ing to the relation
-By
P = po ©
The gravity field was taken to be perpendicular to the main
flow. Drazin obtained a curve of neutral stability in a
wave number - Richardson number plane and concluded from
this that the critical Richardson number is 1/4, i.e.,

the flow is stable for

J > 1/4

11



and unstable for
Jd < 1/4'

Miles®® used a hyperbolic tangent function to represent
both the velocity and the density distribution in the shear

layer. The slower moving stream corresponded to the higher

be perpendicular to the main flow. He also obtained a
neutral stability curve in the wave number - Richardson
number plane and reached the same conclusions as Drazin,

i.e., stable flow for
J > 1/h

and unstable flow for
J < 1/4

The reoccurence of the value of 1/4 for the critical
Richardson number in these analyses has not been satis-
factorily explained. The following discussion is given
in Chandrasekhar.3S

If two neighboring volumes in a stratified flow are
interchanged, the work that nust be done against the

acceleration of gravity, per unit volume, is given by

6 W =_g6pbz

The kinetic energy which is available to do this work

(per unit volume) is given by

1/2p[UR+(U+8U)2 - 1/2(U+U+6U)2] = 1/4p(8U)2




If the amount of work that must be done exceeds the amount
of available kinetic energy, the displacement will not

occur. Thus a sufficient condition for stability is

/4% p(8U)2 < -gopbz

or equivalently
2 o pn & (90
(5505 < -4 > (£2)
g (%‘g)
Ri = -———— > 1/4 (for stability)
auy =2
o (&)
It is apparent that a necessary condition for instability
is
Ri < 1/k

In the preceeding analysis, the effect of the density
change §p has been neglected in the expression for the
available kinetic energy. This is equivalent to neglecting
the effect of the heterogeneity of inertia and considering
only the effect of the gravitational field. Thus, the con-
clusion reached in this manner agrees with that obtained
for the same case by more involved analysis.

Menkes®% in a later paper considered the stability of
a density stratified shear layer including both the effect
of the heterogeneity of inertia and the effect of the
gravity field. He again assumed the velocity distribution

to be given by a hyperbolic tangent function and that the

1
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density decreased exponentially with height. From his
inviscid analysis he concluded that the value of the
critical Richardson number depends on the magnitude of the
non-dimensional density gradient. He obtained a family of
neutral stability curves with the value of the critical
Richardson number increasing as the non-dimensional
density gradient decreases.

Two neighboring volumes in a stratified flow may again
be considered to be interchanged. If the effect of the
density change 6p is included in the expression represent-
ing the available kinetic energy, it can be demonstrated
that the value of the critical Richardson number is
decreased with an increase in the dimensionless density

gradient, i.e.,

/% p(8U)2 + 1/2 6psUU < -g6p62

or
(ﬁB) 1 aP

ZB.OZL _ q/p ROZ 5 /L (for stability)
(A)2 1 au
P 3z u 32

Thus, the conclusion reached in this manner agrees qualita-
tively with the analysis of Menkes.

Very few analyses of density stratified flows have
been given that include the effsect of viscosity. ShenSS
investigated the stability of laminar boundary layers with
injection of a foreign gas. Although his analysis included

viscous effects, he was unable to determine stability



¥

criteria for the viscous case. From hilis inviscid solution
he concluded that injection of a heavier gas would result

in a more stable laminar boundary layer than injection of

a lighter gas.

Schlichting®® considered the stability of a laminar
boundary layer on a flat plate with a density gradient in
the boundary layer and constant density outside of it. He
found that the critical Reynolds number increased rapidly
as the Richardson number increased. The critical Reynolds
number for a Richardson number of zero (homogenerous flow)
was found to be 575, while for a Richardsan number of
1/24% the critical Reynolds number became infinite.

Clearly there is a definite need for additional
analysis of the problem of the stability of half-jet type
flows with density stratification. No analysis to date
has been based on an acceptable similarity solution of the

equations of continuity, momentum and diffusion. And at

the present time no one has included the effect of viscosity

in their analysis.

15
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I1T Hydrodynamic Stability Analysis
IIT -1 The Disturbance Differential Equations
The Navier-Stokes equations for incompressible flow

may be written

x-direction p[ + u@— + vﬁ—] = §i ﬁ— (u aX) + §§(# %%)
III"‘ lo 1

y-direction p[—— + udl 4 va—] - %% - pg + %i(“'gi) + %X( )

X

I11-1.2
If molecular diffusion is neglected, the equations of contin-

uity and diffusion may be writien

Qu oV _
aX 3y =0 17T-1.3
20 P 20 _ -
3t 4+ u % + v v - 0 IIT -1.4

The most successful method of analyzing the stability
of laminar flows is called '"the method of small disturbances'.
The motion 1s decomposed into & mean flow and a disturbance

superimposed upon it. The mean flow is regarded as steady



N

and is described by the velocity components u and v,
the pressure P and the density p. The corresponding
quantities for the non-steady disturbance are denoted by
u', v', p, and p' respectively. Thus, the instantaneous
values of the velocity components, the pressure, and the

density are given by

[
cl

u + u!
V=v+vV
=P+ D
p=p+p' I11-1.5

DA~

Before proceeding,

O, R N

an additional simplifying assumption
will be made. The mean velocity u and the average density
p will be assumed to be a function of y only and the

transverse velocity component will be assumed to be zero,

i.e.,
u =1 (y)
p=7p (¥)
v =0 I1I-1.6

Such a flow is described as a "parallel flow". For the two-
dimensional mixing problem considered here, equations ITII-
1.6 are a good approximation at reasonable distances down-
stream from the beginning of the mixing region, i.e., for
larger values of the Reynolds number.

Introducing equations III-1.5 and III-1.6 into

equation I11¥-1.3, the continuity equation becomes

17
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au | u _ .
X + 3y - 0 ITT-1.7

Similarly, neglecting quadratic terms in the disturbance

components, the diffusion equation becomes

%% + %%'+ a %ﬁl + v! %% =0 TII-1.8

Since the mean flow is steady equation [IIT -1.8 may be

simplified to

3p' | T 9Pt ti§= -
3t + u X + v 3y 0 II17-1.9

After linearizing and subtracting the mean flow quanti-

ties, equations IIT-1.1 and IIT-1.2 become

—au', — au' p AU, _ _ 3D, 2 au'y .2 ( au'

Plat T U 5z V' o) s Tax ix) 55k 55)
TII-1.10

seou! L T avio o 3p | 2. av' 2 vt

Plie * U 1= "5y - p'e e )+ oyle gy
TTT-1.11

The distubance has been assumed to be two dimensional on
the basis of Yih's extension of Squire's theorem to the
viscous heterogeneous case.®®

The continuity equation, as given by equation ITI-31.7
may be integrated by introducing a stream function ' such

that

r _ 29! o At -
ut! = 3y v = X I1T-1.12

Equations ITI-1.312 and IXI-1.7 are based on the
assumption that the effect of molecular diffusion may be
neglected. The disturbance stream function ' is assumed

to be represented by



ig(x-ct)

PHX,Y,E) = o(y) © TIT-1.13

where o(y) is the amplitude function of the fluctuation, g«
is the wave number of the disturbance and c¢ is a complex
quantity given by

¢c=c,+1c ITT-1.1%
In this equation Cn denotes the velocity of propagation of
the wave in the x-direction and cy determines the degree of
damping or amplification depending on its sign.

From equations ITI-1.12 and ITT-1.13 it follows

that
ul! = - %%l = o' (y) clalx-ct)
vl o= - gg%l = - ig o(y) etalx-ct) I11-1.15

Introducing equations III ~-1.15 into equations JIT-1.10
and IIT -1.11 and eliminating pressure, the following
ordinary fourth-order differential equation for the amplitude

is obtained:

(u-c) ("-ofp) -~ u'p + El[( u-clo' - u' @] =
o

g— aaxgr e—ia(X—Ct) + Jj%&[(,DIV"Eaz ‘P" + aq,‘p] IT1-1.16
dleoy [o}

The disturbance density 1s assumed to be represented by

ia(X—Ct )

p'(y) = R(y) e IT1-1.17

Introducing equations ITT-1.17 and ITT-1.15 into
equation I17-1.9, the following relationship between
R(y) and ¢(y) is obtained:

19
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R(y) = @ly) 20 ITT-1.18

S . o oY
Thus,

20" - 10 R(y) elelx-ot) TII-1.19
or

1%5 % o-La(x-ct) _ qalx) bg I1T-1.20

Tu-c

Substituting equation IT11-1.20 into equation ITI-
1.16, the disturbance differential equation becomes

(@-c) (o"-ePp) - W' - 8'5 e +f [(Gmc)p-T'p] =

2 u

= [oTV 220" + o] ITI-1.21

Defining the reference length for velocity as 6 and the
reference length for density as 1/B and referring all
velocities to a reference velocity U, equation  III-1.21

may be put in the dimensionless form

(w-c) (¢"-0Pp)-w"g-0 B -+ LR [(w-c)e-w'p] =
p P

2 1

lolV -267¢" + oo ITI-1.22

Bl

In this equation, J is the Richardson number given by

2
5 - 888 III-1.23

R is the Reynolds number given by

R F— %‘.U- III-la 24



and I is the ratio of the scale length for veloecity to
that of density, i.e., '

=86 ITT-1.25

Equation IIT-1.22 is the fundamental disturbance
differential equation for density stratified flows neglecting
the effect of molecular diffusion. This equation will be
the starting point for the discussion in the remaining

sections of this chapter.

IIT-2 Homogeneous Case
In this case, since there is no density variation,

equation IIT-1.22 reduces to

(w-c) (@"-0efp) -w"p = i%[¢lvn-2 oFo" + o] IIT 2.1

This equation is commonly referred to as the "Orr-Sommerfeld
equation". The solution technique to be discussed in this
section was employed by Iessen* in his analysis of the
stability of a homogeneous half-jet flow.

The independent variable in equation . III-=2.1 is y/5.
Iessen set the reference length § equal to /[;;761 The

independent variable of equation III-2.1 is then

/s = 3// ve/o = 3/ 0/ ux = n III-2.2

In terms of the function f(n), defined in reference 67

equation IIT-2.1 becomes

(fr-c)(g"-cBp - " )= —;-%[(pIV ~202¢"+ate] III-2.3

21
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Because equation IITI-2.3 is of the fourth order, a

set of four linearly independent solutions exists. Thus,
o = ap+ b, + coy + dop, ITI-2.4

Iessen showed fhat the solutions @, and ¢, are each un-
bounded somewhere in the flow field and therefore they
cannot be considered in the solution of equation I7T-2.3.
He solved for the solutions ¢, and ¢, by expanding ¢ in
powers of (-i/oR). Thus,

-z (F
Substituting this expression into equation III-2.3 and

0 oK) ITT-2.5

equating like powers of (-i/o R), the following equations
are obtained for ¢(°) and ¢(1):

fl”
.c

¢(o)"_[a?+ = ] ¢(o) =0 ITI-2.6
DL £ 1) (O)IV 202 (O)"+ 4 (0)
¢( ) '[azf T ol ¢( = & f!fcm e ¥

IT1-2.7
-An asymptotic expression for f(n), valid for large

negative values of 7, is given by {reference 67),

1/28n Sn 3/28n
f(?})=To+T1€ +T2e +Tse +oo.

Since f!' « ¢ for large negative n,

Firt 1/2577 Sn 3/28n
-——f'—C=Dle +Dze +D38 4+ oo

I11-2.8

The various coefficients in this expansion as well as the

B



coefticients of other asymptotic expansions in this
section are given in Table IIT-2.Ll. '

Inserting equation TII-2.8 into equation IIL-2.6,

' 1/28 S 3/28
w(O)'—[a? + D1 e K + D= e K + Dg e ﬂ] ¢(°) =0

ITT-2.9

From this equation, it follows that

(o) = e 4 hio e(od—l/2S)n + hso e(az'l‘S)'n + hso e<a+3/28)77+..,

©
II1-2.10
Inserting this expansion for ¢(°) into equation
IIF2.7,
1" 1/25 S'r) 3/28
(p(l) "[a2+ Dl e n + D2 e - Ds e 77] (p(l) =
(a+1/28) 7 (etS)m (ec+3/25n
=P1 e + P2 e + Ps €
IIT-2.11
Thus,
om (e+1/28) (o+S) (e+3/23)
¢(l) =€ + i e 7+ hai e 77+ hay e 77+ sos
I1T-2,.12

Iessen integrated equation TIIT-2.6 by the method of
analytic continuation. Because of the singularity in this

equation at the point where f!

¢, lessen chose the path

of numerical integration shown in Figure =~ IIIL-2.1.

It is first necessary to integrate the similarity
differential equation f"" + 1/2 ff" = 0 along this path.
To do this, the asymptotic expression for f(7n) given
above is used to represent f(7n) for n = -6-3i.. The method

of analytic continuation

23



Table ITI-2.1l.-Coefficients for Asymptotic
Solutions of ¢(°) and ¢'*

Homogeneous Case

R

D= “ge-

S8 T:1 23
Dz = - &= (T2 + 355

S8 _ 27T ToS | T.5%3%
Do = - 55 [ 552+ 252° + 55
Eo = - 2 |

™S
B = - 562

2
E2 = - %2 [T2 + TlCS]
Dy _

hio = —2—

o + (2)?
hEO — Dlth + &

2 o3+ 32
hao = Dihog + Dohig + Ds

3 as + (%ﬁ)z
Gr = 3% (a + 1/43)% hio

Ge = (28)2[a + 1/287% hso

Gz = (33)%[a + 3/%31% hao

PPy = EoG1

PPz = EoGe + BE1Ga

PPs = EoGs + B1Gz + EaGa

hyy = _Lh_i;ﬁg; hey - Dahen  Delus + Do + PPy
« 8+ (5)2 2 S+ (2 8)2

hm_zDﬂn1+;g+IT2

2o + &
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(-6,-3i)

Fig. ITI -2.1 Path of Integration in Complex 5 Plane

is then used to integrate the asymptotic expression to 7 = +6+0i.
The asymptotic expression for ¢(°) given by equation
ITI-2.10 is then used to represent ¢<0) at g =‘-6—Bi and
the method of analytic continuation is employed to integrate
equation TIT-2.6 to pn = +6+01.
Finally, using equation III-2.12 to represent w(l)
for n = -6-31, equation III-2.7 may be integrated to
T = +640i. Iessen employed a finite difference scheme to
perform this integratiou.
For large positive or negative values of 7, equation
IIT-2.2 may be written
o' - of o=0 ITI-2.13%

The asymptotic form of ¢ is thus given by

an -
olz=) = ka e  + ko € T ITI-2.24

Because the solution must remain bounded, ki = 0, for

n = » and kz = 0 for 5 » ». It follows that the proper
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boundary conditions on ¢ are

o' ma@ -

© "t M IIrT-2.15

The function ¢ is approximated by
0= qo(O) + (;;—%{) qo(l) ITI-2.16

The boundary condition at plus infinity may be written
(p'(+ cn) + © (+ oo) =0 1fr-2.17

Substituting equation III-2.16 into equation III-2.17

and solving for the Reynolds number R gives

(D(l)'(+ ®) + a@(l)(_l_ o)
¢(°)(+ o) + o ¢(°)(—w)

When ¢ (o) ang ¢(l) have been integrated to n = +6+01,

I
QI

[ ] III-2.18

equation ITI-2.18 may be used to calculate the Reynolds
number.

However, the coefficients of the asymptotic expressions
for Q(O) and ¢(l) contain the quantity c. Since ¢ is unknown,
the integration of equation TIII-2.3 becomes a trial and
error process. The curve of neutral stability is desired.
Therefore Cy is set equal to zero. For a given value of the
wave number q, various values of c, are assumed and
equations ITI-2.6 and TII-2.7 are integrated along the
path shown in Figure I1T-2.1. Eguation IIT1-2.18 is then
used to calculate the Reynolds number. The Reynolds number

calculated in This way is usually complex. For a given

value of o, that value of c,, for which the Reynolds number



calculated from equation I1I-2.18 is real, is the desired
value of Che This value of Cp along with the corresponding
values of ¢ and R form a set of eigenvalues. This process
is repeated for various values of « to obtain various points
on the curve of neutral stability in the -R plane. Curves
of equal amplification and damping may be similarly obtained

by setting Cy = 0.

ITIT -3 Heterogeneous Case

The disturbance differential equation in this case is

(w-c)(p"-aPp) ~ W'p - J %' B+ LR [(w-c)p'-w'p] =
b

=5 [0V 267" 5 ool III-1.22

Two additional terms are apparent in this equation as com-
pared with equation III -2.1 which is for the homogeneous
case. The term containing the factor L represents the
effect of the heterogeneity of the fluid on the inertia and
the term containing the factor J represents the effect of
the gravity field (see section II -2). |

The independent variable in equation III -1.22 is y/5.
If the reference length §is again set equal to /f;;76:_
then the independent variable of equation IT1d.22 is

T’, i.e.,

A = 3// vi/U = ¥/ U/vx = g TII -2.2

In terms of the functions f(5) and p(gn) defined in section

IIT -2, equation IIT.-1.22 becomes

27



28

(f'C)(¢"—a2@) - MM

+ L 57

BRecause equation

a set of four linearly independent solutions exists.

A ",[(f’—c)@-f"¢] —

Af"

¢ -J Tapr fr¢ T

1

;ﬁmw -262¢" + a*e] 111-3.1

IIT-3.1 is also of the fourth order,

How-

ever, lessen's analysis for the homogeneous case may be

extended to show that the ¢3and w; solutions are again each

unbounded somewh erdn the flow field and therefore cannot

be considered in the solution of equation

I1T -3.1.

Iessen's solution method for the homogeneous case may

be logically extended to this case.

Thus, ¢ is again

expanded in powers of (-i/e¢R), i.e.

T (/)
- 3 (-i/eR
® s ®

Substituting this expression into equation

equating like powers of

are obtained for ¢(°) and ¢

(k)

11T -2.5

III"B . l aIld

(-i/oR), the following equations

()
()

1 pirt AFM
(p(O) _ [az + m] (P(O) _ J ml oz +
1 1 13
+ L 'i%%f? [(p(O) - f'—C ¢(O)] = O III_302
(l)" > fur (1) 3 Af” @(l) +
® - [ + 55l o7 7 - TEFr (f-c)2
n
Af” f” (O) ) 2 (O) + 4 (O)
+ L'TZKFT[w(l) T w(l)] _ o o @ a0
f-c
I11-3.3



From reference 67, an asymptotic expression for

f(n) valid for large negative values of 7, is given by

1/28q Sn 3/25n
f(n)=To+T1e + T € + Ta e + .o
III—‘3 ° )'I'T
Since f' <« ¢ for large negative 7,
e 1/25q Sn 3/25n
-f—f—_—c=Dle +D2e +Dse + oo IIT-3.4
Similarly,
on 1/28q Sn 3/25n
ts+thRoe + Roe  + Rz e + eee IIT-3.5
and
1 1/287 Sn 3/28n
—=— = ALy + AA; € + AR e 4+ AAs e + eeo
(£t-c)®
IIT-3.6
Since Af'«< 1 for large negative 7,
AF" 1/2877 on 3/2377
m=BBle + BB € + BBs e + s
III -3-7
Combining equations III-3.7 and III-3.6 gives
T-AFT (FToa)E = CC. e + CCz e + CCs e + oo
I11-3.8

The various coefficients in these expansions as well as
the coefficients of other asymptotic expansions in this
section are given in Table III-3.1

Inserting equations IIT-3.4, III -3.5 and III:-3.8
into equation IIT-3.2,



Table ITII-3.1l.-Coefficients for Asymptotic
Solutions of ¢ o) ana o't

Heterogeneous Case

~T1 3%
D = =ge-

Sh T128
Dz = - [T + I5g ]

8% _ 27T ToS | T1°s°
Do = - L5647+ Thaee ]
Eo = - 2
Es = 5 [':[‘2-!-leS
2 = T ¢c2 oo

2
Ry = - Tli

R2=-6—ET2+—£”J

2 T TS 7,882
Re = - &= [ = + T8 LBy

2

. ZA_T%@_
2 2a3
BB = ATpS? + 23257

2 2 3 3m. 2a4
BBs = OATsS + AT TS + A 'g-l 3
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Table ITI-3.1. (Continued)

Heterogeneous Case

DDz = BB:iR:
DDz = BB:Ro + BB=R1
AAO = - %2

1 T3S
A-A-l = - 03 ) )

1 T:283

Abz = - 25 | TaS + “357)
CC1 = AAoBRy

CCz = AA;BB. + AAGBR:
CCs = AAOBBS -+ .A-A-]_BB2 -+ AAEBB:L

Dy + JCC1 - IBB1 o
o S + (%)2

hio =

FBsg = CC1hio + CCs=
Bfzo = BBi[ o + & S] o
hao = Dihio + Do + JFF2o -~ I(EEsq + BB o - D= )

2 oS + 82
Fhisg = CCihzo + CCzhig + CCa
EEso = BBi( o + S) hao + BB2( o + 3 8) Hio

hao = Dihsoo + Dohig + Ds + JFFsq -~ 1L(EEso + BBsa—DDzhlo—DDa)
o= 35y 2
3 a8+ (52)
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Table ITI-3.1l. (Continued)

Heterogeneous Case

Gy

Gs

PP1
PP>
PPs

hii

hai

haa

32 (o + 1/48)2 o

(2 8)% [¢ + 1/257% h=zo
(38)2 [a + 3/4372 hso
= EoCa ’

BoGze + Bi1Ga
EoGs + E1Gz + ExGa

Dy + JCCy - IBBy « + PP1

a S+ (8/2)°
EF21 = BBi (& + 1/28) hia
FFs; = CC1haix + éCE
_ Dhhii + D + JHs1 - I(EEgl + BB o -~ DDQ) + PPo
2 ¢S + 8%
EFz1 = BBi(e + 8) hei + BBe(a + 1/28) hia
FHz1 = CClhgl -+ CCzhll -+ CCs

_ Dihe1+Dphy1+Ds+JFF s ~L(BEgy +BBg -DDzhay -DDs) + PPs

3 a3+ (38/2)2




1/259 Sn 3/28n
(p(o)"_[az + Dl e + D2 e + Ds e ] (p(O)
1/28n S 3/28n ()
- J[Ccl e + CC> e + CCa e© 1 © o +
25 s 3/25q 1/25q S
+ L{BBL el/ TBB. & 4EBs e ][¢(°)'-(Rl e +Ra e
| 3/287
+Rz © )¢(°)] =0 - JI1-3.9
or .
251 Sn 3/23n
qa(O)"—[aa + D el/ +D>e + D3 e ] ¢(°?
1/287 S 3/28M
-J [CC1 e / + CCz e Tl, CCs € ] (p(O)
1/23M Sn 3/237 ,
+ L [BBie 72 mm &+ EBo o 1 olo)
S 3/28m
- L [DD2 e + DDs e ] ¢(°)'= 0 III-3.10

From this equation, it follows that

¢(°)= et hy o e(""r %S)"+ hso e(°‘+5)77+ hao e(‘ﬁgs)% oo
ITT-3.11
Inserting this expansion for (p(O) into equation III‘—}.B,_

g o8 S 3/23n
(p(l) - [az + Dl. el/ n‘l‘ 132 e T'+ D3 e ] SD(l)

1/25n Sn 3/281 (1)
Jd [CCi e + CCz2 ¢ + CCz e 1o

1/287 sn 3/28n ()¢
+ L [BB. e + BB ¢ + BBs e lo

S 3/28n
L [DD= e n+ DDz e ] ¢(1)

(at28)7 (eS)m (4287
PP; e 4+ PP> € + PPs €

ITT-3.12
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) om (at55)7 (ats)n (at28)7

© =e + hi1 e + hey € + ha; e Feos

III -3 . 13

Using the asymptotic expressions for ¢(°) and ¢(1)
given by equations III-3.11 and III1-3.13 as a starting
point, equations III-3.2 and III-3.3 may be integrated
by the method of analytic continuation in a manner entirely
analogous to that outlined in section =~ III-2. The
boundary conditions are given again by equations IT1-2.315,
Thus, after integrating ¢(°)'and ¢(1) to a large positive
value of 7, equation III-2.18 may again be used to
calculate a Reynolds number. Three special cases may be

cited.

Cagse 1 J =0, LZO

In this case, the value of L may be determined from
the similarity solution of the boundary layer equations.
For a given value of A and I, L will be a constant. Once
the value of I, has been determined, the trial and error
process to determine the curve of neutral stability would
proceed as outlined for the homogeneous case in section

IIT -2.

Case 2 J A0, L=0

In this case, J would be treated as a parameter. For
a given value of X and I, J would be specified and a

neutral stability curve obtained to gilve a minimum critical



Reynolds number. The numerical value of J would then
be changed and another Reynolds mumber obtained. In this
way, the dependence of the minimum critical Reynolds

number on the Richardson number could be explored.

Case 3 J £0, LZ0

| This case would be treated similarly to case 2. The
only difference being that the value of L would be deter-
mined from the similarity solution of the boundary layer

equations before introducing J as a parameter.

III-4 Stability Criteria
Stability criteria for viscous density stratified flows
are not clearly established. The importance of the Richard-
son number and the Reynolds number 1s discussed in section
IT-2. It is generally accepted that the minimum critical
Reynolds number increases as the Richardson number increases.
However, stability criteria are generally given as a
minimum critical Reynolds number for a given value of the
Richardson number.
In section III-2 and III-3, the reference length
for velocity o6 was defined by

5 =/ vx/U IIF4.1

The reference length for density will also be proportional

to / vx/U. Thus,
1/B = (/1) v/ - TIE4.2
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Bs = L ITI-%.3
The Richardson number J is given by

2
g -8f _ gl - TTT 1.4

and the Reynolds number is given by

R = §U/v I1I-%.5

It follows from equation III-4.1, that both the
Richardson number and the Reynolds number increase with
J Xe

An increasing Reynolds number tends to be destabilizing
whereas an increasing Richardson number tends to be
stabilizing. What determines which of these factors is
dominating?

A typical curve showing the increase in the minimum
critical Reynolds number for increasing Richardson number
is shown in Figure TIII-4.1.

Such a curve might be obtained for case 3 discussed
in section ITIT-3. The factor which must be determined
is how the Richardson number and the Reynolds number
change relative to one another as the flow proceeds down-
stream.

Equation III-%.5 may be rewritten

5 = II}—V III -4.6

Substituting this into equation I1II-4.L4 gives



B
|
|
UNSTABLE [
R
STABLE
A
J
Fig. ITI-4.1. Critical Reynolds Number
as a Function of Richardson Number
;- Eb _ ERy T
or
_1l,0°2 -
R—L( gy) J IT1-4.8

Equation III-4.8 indicates that the Reynolds number
R is a linear function of the Richardson number J. The Iine
representing the Reynolds number as a function of the
Richardson number passes through the origin and has a slope

of

% ( us ) III-4.9

If the flow is to be stable, then the point on Figure
ITT-4%.1 representing the Reynolds number and the Richardson
number for a certain downstream position must always lie
below the curve A-B. The flow would be neutrally stable

for that Reynolds number-Richardson number line which is

27
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tangent to the curve A-B. Thus, the slope of that particu-
lar line designates the critical value of the dimensionless
group

% ( -g%) III-4.9
for stability. It can be easily shown that the dimension-
less group (U®/gv) is the product of the Reynolds number
and the Froude number.
IV-Results

The homogeneous stability problem for A = 1.0 was
considered by Iessen.* His solution is discussed in

section IT-1. In section IT1-3, an extension of Iessen's
solution method to the heterogeneous stability problem was
presented. In that section, three special cases were dis-
cussed. The case for which J £ 0 and L = O is not
particular applicable to the half-jet mixing problem since

L is usually significantly different from zero. This case
occurs in meterological applications where the density change
takes place over a much wider region than the velocity change
and therefore L is very small.

The case for which J = 0 and L # O corresponds to a
heterogeneous half-jet type flow with no gravitational field.
Neutral stability curves for this case are not available. It
was proposed to calculate curves of neutral stability for
flows with various density ratios. The solution method of
Iessen is directly applicable only for this case of ) = 1.0,
i.e., vz = 0. Analytical laminar similarity solutions were
obtained for » = 1.0 and T = 0, -0.2, -0.4, -0.6 and -0.8.
The values of the constant S appearing in the asymptotic
expressions for the solution of the boundary layer equations

are given in Table IV-1.



Table 71v-1. Values of the Constant S

T ' S)
-0.8 0.59063895
-0.6 0.74360338
0.4 0.91674868
-0.2 1.07730919
0 - 1.23849623
0 (Iessef?) 1.23849316

‘From the analytical similarity solutions, the value
of I for each value of I was calculated. The width of
the mixing region for density was defined in a manner entirely
analogous to the way in which the width of mixing region for
velocity was defined in reference 67. However, in this case
the width of the mixing regions for both velocity and
density was based on a 98% change across the mixing regioﬁ
rather than a 90% change as in section V-%3. The results

are shown in Table IV-2.

Table IV-2. -~ Values of the Constant L

r L
-0.2 0.956
-0.4 0.901
-0.6 0.821
-0.75 0.727
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It is interesting tb note that the value of L decreases
as the density ratio is increased. The numerical results
of the similarity solution for these cases are given in
reference 67 as well as valus of o, B8, Mo and £o.

The first neutral stability curve to be calculated

was for the case of I' = -0.4 corresponding to a density
ratio of 7 to 3. Using the method outlined in section
III.3, points on the curve of neutral stability were
obtained by trial and error procedure. As the value of
the wave number ¢ was decreased, the eigenvalues of Ch and
R decreased. However, for values of ¢ less than 0.335,
eigenvalues for Ch and real R could not be found. The

results obtained are shown in Table IV-3.

Table IV-3. Eigenvalues of a, Cp and R

o c R o Cr R

0.375 0.5324 238.23+1.031 0.345 0.4800 35.71+0.83i
0.375 0.53%25 240.93-1.031i 0.345 0.4835 37.46+0.021
0.365 0.5175 84.72+0.921 0.345 0.4850 38.25-0.401
0.365 0.5179 85.58+0.06i 0.335 0.4580 27.87+0.101
0.365 0.5181 86.22-0.40i 0.335 0.4600 28.42-0.071
0.355 0.5015 51.89+0.321 0.335 0.4630 29.28-0.371
0.355 0.5020 52.43-0.01i 0.325 0.4000 18.45-0.74i

0.325 0.4200 20.82-0.541

0.325 0.4350 23.18-0.761




It can be seen from this table that for ¢ = 0.325,
the imaginary part of R does not change sign as- ¢, is in-
creased. Thus, a real eigenvalue of R for ¢ = 0.325 was
not found. The reason for this characteristic is not known.
A thorough search of the numerical procedure for algebraic
or typographical errors was made. None were found. The

eigenvalues interpolated for real R are given in Table

IV-4.

Table IV-4. Eigenvalues of q, ¢,, and Real R

o Cn R
0.275 0.532 234 .6
0.365 0.518 85.6
0.355 0.502 52.4
0.345 0.484 37.5

8.2

0.335 0.459 2

The computer program used to determine the eigenvalues
in Table IV-4 was able to duplicate Iessen's eigenvalues
for the homogeneous case exactly. The points on the neutral
stability curve determined by Iessen for the homogeneous
case are shown in Figure IV-1. In the same figure, the
eigenvalues in Table IV-4 are shown. The cut off wave
number for the flow with a 7 to 3 density ratio appears to

be less than that for the homogeneous case. However, the
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two neutral stability curves cross at a value of the wave
mumber of about 0.340.

Unfortunately, it was not possible to determine if the
critical Reynolds number for the heterogeneous flow is
. higher than that for the homogeneous flow. If this was true,
then the effect of the "heterogeneity of inertia" could
definitely be said to be stabilizing. The fact that the
value of the cut off wave number is less for the heterogeneous
case is not a true indication of a stabilizing effect unless
instability to a narrower band of wave-lengths can be said
to be more stable than instability to a wider band of wave-
lengths.

An attempt to calculate curves of equal amplification
and damping led to very ambiguous results. Because of this
and the inability to obtain real eigenvalues of R for a
wide range of wave numbers, attempts to calculate neutral
stability curves for other density ratios were not made.

The potential results of these calculations if the reasons
for the assoclated difficulties could be eliminated, should
be very Interesting and valuable. Results for the case

J #0 and L £ 0 would also be of great interest and value.
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